An activin receptor IIA ligand trap promotes erythropoiesis resulting in a rapid induction of red blood cells and haemoglobin

نویسندگان

  • Soraya Carrancio
  • Jennifer Markovics
  • Piu Wong
  • Jim Leisten
  • Paola Castiglioni
  • Matthew C Groza
  • Heather K Raymon
  • Carla Heise
  • Tom Daniel
  • Rajesh Chopra
  • Victoria Sung
چکیده

Sotatercept (ACE-011), a recombinant human fusion protein containing the extracellular domain of the human Activin receptor IIA, binds to and inhibits activin and other members of the transforming growth factor -β (TGF-β) superfamily. Administration of sotatercept led to a rapid and sustained increase in red blood cell (RBC) count and haemoglobin (Hb) in healthy volunteers (phase I clinical trials), but the mechanism is not fully understood. Mice treated with RAP-011 (murine ortholog of ACE-011) respond with a rapid (within 24 h) increase in haematocrit, Hb, and RBC count. These effects are accompanied by an equally rapid stimulation of late-stage erythroid precursors in the bone marrow (BM). RAP-011 also induces a significant increase in erythroid burst-forming units and erythropoietin, which could contribute to additional, sustained effects on RBC production. Further in vitro co-culture studies demonstrate that BM accessory cells are required for RAP-011 effects. To better understand which TGF-β family ligand(s) mediate RAP-011 effects, we evaluated the impact of several of these ligands on erythroid differentiation. Our data suggest that RAP-011 may act to rescue growth differentiation factor 11/Activin A-induced inhibition of late-stage erythropoiesis. These data define the mechanism of action of a novel agent that regulates RBC differentiation and provide the rationale to develop sotatercept for the treatment of anaemia and ineffective erythropoiesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational methods for designing potential inhibitors for activin type IIb (ActRIIB) receptor for treatment of anaemia

Anaemia is a clinical syndrome of blood characterized by decrease in the haemoglobin content in the red blood cells resulting in the marked reduction of the oxygen carrying capacity of the blood. Activins are one of the important types of the Transforming Growth Factor (TGF) protein superfamily. There are various cellular processes in vertebrates from fertilization to adulthood is regulated by ...

متن کامل

MicroRNA-181a Suppresses Mouse Granulosa Cell Proliferation by Targeting Activin Receptor IIA

Activin, a member of the transforming growth factor-β superfamily, promotes the growth of preantral follicles and the proliferation of granulosa cells. However, little is known about the role of microRNAs in activin-mediated granulosa cell proliferation. Here, we reported a dose- and time-dependent suppression of microRNA-181a (miR-181a) expression by activin A in mouse granulosa cells (mGC). O...

متن کامل

Paracrine Activin-A Signaling Promotes Melanoma Growth and Metastasis through Immune Evasion.

The secreted growth factor Activin-A of the transforming growth factor β family and its receptors can promote or inhibit several cancer hallmarks including tumor cell proliferation and differentiation, vascularization, lymphangiogenesis and inflammation. However, a role in immune evasion and its relationship with tumor-induced muscle wasting and tumor vascularization, and the relative contribut...

متن کامل

Differential effects on Xenopus development of interference with type IIA and type IIB activin receptors

One candidate for a mesoderm-inducing factor in early amphibian development is activin, a member of the TGF beta family. Overexpression of a truncated form of an activin receptor Type IIB abolishes activin responsiveness and mesoderm formation in vivo. The Xenopus Type IIA activin receptor XSTK9 differs from the Type IIB receptor by 43 and 25% in extracellular and intracellular domains respecti...

متن کامل

MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4.

MicroRNAs have been suggested to modulate a variety of cellular events. Here we report that miR-24 regulates erythroid differentiation by influencing the expression of human activin type I receptor ALK4 (hALK4). Ectopic expression of miR-24 reduces the mRNA and protein levels of hALK4 by targeting the 3'-untranslated region of hALK4 mRNA and interferes with activin-induced Smad2 phosphorylation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 165  شماره 

صفحات  -

تاریخ انتشار 2014